

INSPECTION REPORT

System Inspected: FRAMO Cargo and Ballast pumping System

Contents

1. Report summary and recommendations

2. Evaluation of the inspected system, test and adjustments:

- 2.1 Hydraulic power unit(s) and auxiliary equipment
- 2.1.1 Running hours and Magnetic chip detectors inspection.
- 2.1.2 Relief valves control of adjustments
- 2.1.3 HPU power-packs control of adjustment and thermal check
- 2.2 Control panels, remote-control valves, and related equipment
- 2.2.1 Alarms tests
- 2.3 Cargo (COP) and SLOP offloading pumps Hydraulic driven
- 2.3.1 Cargo pumps performance test and purging
- 2.4 Ballast Pumps (WBP) Hydraulic driven
- 2.4.1 Ballast pumps capacity and performance test
- 2.5 Other pumps and hydraulic driven equipment's
- 2.6 Piping
- 2.7 Bow Thruster
- 2.8 Cargo Heaters

3. Spares parts and tools

3.1 - Spare parts and tools necessary for installation and repairs

4. Enclosures

To verify the condition of the FRAMO Cargo Pumping Plant, this report was requested by **JNE MARINE PARTNER**

to carry out inspection of the plant, according to approved quotation number PO no: R12041

Inspection was carried out by:	Santos, Henrique M. F.
During the period of:	16 TH JULY 2023

1. Report comments and recommendations

The FRAMO Cargo and ballast pumping system Inspection and report was thought to be an important tool for helping the vessels technical department and responsible SI, in programing any activities at the inspected system. The inspection is according and follows the manufacturer FRAMO indications, instructions, information's, and recommendations made and at Service bulletins, Manuals, Service letters and FRAMO trainings. The Inspection Engineer have FRAMO pre-docking and annual inspections course/certificate.

The present Inspection, at the FRAMO pumping plant onboard the vessel was carried out during vessel stay at Chalkis Shipyard, in Greece.

The vessel was acquired by a short time ago and still have not done any operation. Condition of the FRAMO cargo and ballast pumping system during operations is unknown. This FRAMO system Inspection and the related tests done, are very important in this situation, because will help vessel SI and owner in taking the appropriated actions to solve any problem and improve the FRAMO system.

We recommended that some off equipment's mentioned bellow, in the report, at chapters, in red color column/dark grey, are repaired or replaced as soon as possible, because failure of those parts can cause system or equipment breakdown or stops. Other equipment's repairs, shown in yellow / light grey color at tables, can be done when more convenient time is, like during one of the IWS or dry-docking periods, but must be monitored carefully and regularly. Bellow sees summarized recommendations from chapters:

Hydraulic Power Unit (HPU room) and auxiliary equipment / ref. chapter 2.1

The HPU room and related equipment are in normal condition. The HPU area is well cleaned and maintained.

Oil cleanliness and damaged cables are the main issues here.

Due to **hydraulic oil contamination with particles**, the main filter is clogged and alarm for main filter dirty is on. The oil analyses made during last years do show that oil was contaminated. The history of oil contamination started in o1.09.2022 (with iso. 25/21/14) and never got better. Last oil analyses from o3/04/2023 still show ISO 21/17/10.

It's of major importance that oil is cleaned as soon as possible. This can be done by replacing all filters and keep system running with minimum 2 PPKS to get enough flow and at having 100bars system pressure. 24hours running should bring most particles, that are loose in the hydraulic system to filter. If this is not done soon, parts like system pressure control valve, relief valves, directional valves, sensors, calibrated orifices, and the pumps from PPKS will not working properly, or will become damage, causing failure and system instability. A kind of particles snowball effect will take place can ending up in complete system breakdown/ stop (one particle will create several and lead to much more, and so on).

After the system is cleaned, **new oil sample must be taken** and analyzed. If value still high system should be flushed a few more times and filters replaced again. It's important to have installed filters with good filtration ratio.

Other very important issue that must be solved ASAP it is related to **damaged transmission cables**. Main return valve has no cable and level transmitter sensor cable is broken at M12 connection plug. This valve is connected to the system safety alarms and if alarm show up, means a problem, and it gives shut down of entire FRAMO system. To be able to continue using the system, crew had to by-pass the alarm (made a jumper). This is very unsafe and if by any chance the valve closes, there will be no alarm and system return line and return side components will blow up/get damaged. Crew should remove the jumper and use the emergency override mode 1 (controlled valve return alarm by-pass) instead. We explained to crew how to do it. When new cable available, remove the jumper – if still there- and reset the system.

The oil level transmitter (LT1) cable is broken at M12 connection plug. It's still connected but hanging loose inside, sometimes giving Low Low-level alarm, and consequently shutting down the system. When alarm is showing on, we did instructed crew how to do the override at Emergency panel at override mode 1, inside the CCR cabinet. Cable must be replaced as soon as possible to avoid interference with operation.

Besides the oil contamination problem and cables, during the inspection, we also observed the following:

- Keep monitoring the magnetic chip detectors every operation.
- Hydraulic oil cooler has no record of internal cleaning and anodes replacement. When possible clean, test and replace anodes if required.
- Cummins diesel engines with leakages. Cause of leakages can be due to gaskets, seals too dry or deformed. During next Cummins engine maintenance, repair the leakages.
- **Air filter** from the auxiliary tank is damaged and very dirty. Replace when possible.

It's recommended to take some action on these above items also, to improve system operationality and bring the condition of the system to normal.

Cargo (COP) and SLOP hydraulic driven offloading pumps / ref.chapters 2.3 and 2.3.1

The Cargo and SLOP pumps top plates and control valves are in normal conditions. Good preservation work, that should be an ongoing process,

Purging routines did show leakages at pumps cofferdams and our tests done during inspection showed that cargo pump from tank. 1P, 3P and 4P S have cargo leak. The one from COP 2P have an oil leak. Is recommended having the pumps pressure tested and repair according to findings.

The performance test showed that 6 pumps are still operating within expected parameters, normal performance, but other 6 have differential pressure above limit, what means that pumps performance is bellow expected and there is much clearance at wear rings. Its recommended to have the wear rings from 2P, 2S, 3S, 6p, 6S and SLOP SB replaced, when possible. Too much clearance at wear rings consequently makes stripping difficult and too much cargo stay inside the tank.

General comment:

Regular/yearly inspection of the FRAMO system is important to improve FRAMO system and keep it operating well. Having an annual inspection made and following the recommendations and do the repairs necessary, described at the inspection report, will help to maintain the system in good health, operating well and free of troubles.

HS SHIP REPAIRS/Hydra Consult have engineers to attend whenever required worldwide to help our customers to improve the quality and lifetime of vessels cargo pumping system.

Consult us for the Inspection programs we can offer.

2. Evaluation of the Inspected system (FRAMO cargo and ballast pumping system)

2.1. <u>Hydraulic power unit(s) and auxiliary equipment</u>

Hydraulic system type: FRAMO A₄V /CLOSED system

Hydraulic pump type: 04 x BOSCH REXROTH A4V SO 500DP / 30R-PPB25Noo

Type of prime mover: 02 X ELETRIC MOTOR ABB M2CA

02 x CUMMINS KTA diesel engine

Location: HPU room, Engine room

HPU (Hydraulic power unit)	Normal condition	Acceptable condition	Poor condition		
Pump Shaft seal condition	Х				
Hydraulic high-pressure hoses	Х				
Hydraulic suction hoses/pipes	Х				
Hydraulic drain hoses	Х				
Flexible couplings	Х				
Flexible dampers for electric motors	Х				
Suction / return valves		Small leakages at suction valve			
Micro switches	Х				
Transmitters and sensors	Х				
Control / relief valves	Х				
Piping / pipe clamps	Х				
Shielding hydraulic flanges	1	NORMAL CONDITION			
Any leakages noted		FEW			
System pressure control valve	W	VORKING NORMALLY	,		
System pressure control valve filter	GREEN IND	GREEN INDICATION- NORMAL CONDITION			
Electric motor(s) condition	NORMAL CONE	NORMAL CONDITION, REPORTED WORKING WELL			
Electric motors bearings/ shaft seal replacement		No record			
Last tests (megger/insolation)		No report			
Diesel engine condition	Reported	working well, but need	revision.		

Acceptable: Term is used when the equipment /parts is/are complete, however some oxidation, materials wear is observed.

Poor: Term is used when equipment/parts are missing, damaged, leaking above limit

Comments:

Engine type: CUMMINS KTA19

The HPU room and related equipment are in normal condition and cleanliness from HPU area is good. Only subject to take in consideration is the small leakages at suction valves. This must be monitored and if increase, consider replacing the valves seals (can be seal kit for valves instead of expensive complete valve).

With leakages

The diesel engines are showing some leakages. It's recommended to have some maintenance on it.

Leakages at Cummins

AUXILIAR UNIT (hydraulic service tank, main filter, and hydraulic oil cooler)	Normal Condition	Acceptable condition	Poor condition
Hydraulic oil level in the service tank	X-60%		
Hydraulic oil service tank condition	X		
Draining of water in the service tank	Х		
Hydraulic service tank <i>air</i> filter			DAMAGED AND CLOGGED
Hydraulic oil cooler Type: SPERRE DPK408-1800		To be inspected	
Hydraulic oil cooler inlet valve (1 piece)	X		
Hydraulic oil cooler outlet valves (1 piece)	X		
Hydraulic oil cooler - last inspection record: <u>no records</u>		X	
Main Hydraulic oil filter		Dirty filter alarm is on	
Main Hydraulic oil filter valves	X		
Filter element replaced on:		2022	
Last oil sampling results water content (PPM)		SEE COMMENTS	
Last oil sampling results oil cleanliness (ISO4406 code 18/16/12)		SEE COMMENTS	

Hydraulic oil sample valve / location	At main return after cooler	
Jockey pumps/ Feed pumps Type: Leistritz	Х	
Jockey pumps electric motors: ABB M2AA-090-L2	Х	

Normal: Term is used when the equipment /parts is/are complete, clean and without broken or missing parts. **Acceptable:** Term is used when the equipment /parts is/are complete, however some oxidation, materials wear is observed. **Poor:** Term is used when equipment/parts are missing, damaged, leaking above limit

Comments:

The last hydraulic oil analyses sampling results report we had access indicate that oil is with quantity of particles above recommended. Due to oil contamination is very important to make a new oil sample. Result will indicate what are the actions to be taken in future.

Air filter from auxiliar unit

Auxiliary unit

Hydraulic Oil TRANSFER UNIT and related tanks	Normal Condition	Acceptable condition	Poor condition
Hydraulic oil transfer unit Type: KRAL CKC 15.BAA.000480	X		
Filter element Type: PALL UltiPor III	Х		
Hydraulic hoses	Х		

Transfer pump electric motor Type: ABB M2VA 80	Х		
Hydraulic oil level in the storage tank	X		
Draining of water in the storage tank		o - NORMAL	
Air vent pipe's location	Inside engine room		

Acceptable: Term is used when the equipment /parts is/are complete, however some oxidation, materials wear is observed.

Poor: Term is used when equipment/parts are missing, damaged, leaking above limit

Comments:

Normal condition. No actions required for now.

2.1.1. Running hours and Magnetic chips detector inspection

	Results for FRAMO systems doc.						
Power Pack no.	Zero	Low	Medium	High	Running Hours	Hydraulic pump serial no.	Remarks
1		Х			-	-	ELECTROMAGNETIC CHIP DETECTOR TYPE
2		Х			-	-	ELECTROMAGNETIC CHIP DETECTOR TYPE
3		Х			-	-	ELECTROMAGNETIC CHIP DETECTOR TYPE
4		Х			-	-	ELECTROMAGNETIC CHIP DETECTOR TYPE
FFFD nump's							

Low: (normal)Term is used when *the* quantity of particles collected is not relevant.

Medium (acceptable) Term is used when the quantity of particles collected are within limits, however some materials wear is observed

High (poor): Term is used when equipment/parts/ particles are above recommended limit. Contact manufacturer or maintenance company for details and actions

Comments:

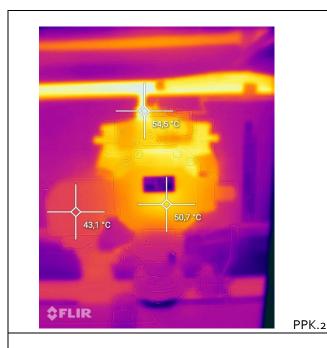
Magnetic chip detectors to be inspected every 3 month and record of inspection to be part of vessel Programed maintenance

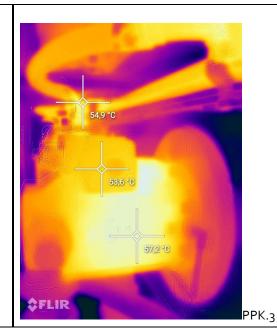
2.1.2. Relief valves control of adjustments

Valve	Before	After	Comments		
Back up valve					
(main relief valve/ P1 +25bars)					
System pressure relief					
valve (at min.flow / P1 +20bars)					
Main return pressure control					
valve / feed pressure	6 bars	6 bars	No adjustment required here		
(Open system = 3 or 2 bars)	o bars	0 0013	No adjostment regoired here		
(Close system = 6bars)					
TO BE ADJUSTED WHEN IS POSSIBLE. PREFERABLE AFTER DRY-DOCKING PERIODS					
Equipment(s) used in test/control: Digital manometer KELLER type LEO2-Ei/300bar/81191.1 / S.N.036256					

2.1.3. HPU power-packs control of adjustment and thermal check

Power Pack.	(min. mecl	isplacement h. Pressure) 35 bars +/-5	(hydraulic r	m pressure nin. pressure)) = 55bars	Minimum to flow speed a A4VSO= o	djustment
	Before	After	Before	After	Before	After
1		35		55		o,7sec
2		35		55		o.7 sec
3		35		55		o,7 sec


TO BE ADJUSTED WHEN IS POSSIBLE. PREFERABLE AFTER DRY-DOCKING PERIODS


A4V pumps Thermal imaging check.

Hydraulic oil temperature during readings: 46° TO 48°C

Equipment used: FLIR Thermal Camera CATS62/vers.3.0.44 – serial 20413585

COMMENTS:

PPks have temperatures within the expected values and difference between inlet, outlet and drain are normal. Feed pump has a normal temperature. No actions required.

It's important to keep monitoring the pumps debris/chip detectors and if any pump start showing high particles content at magnetic, consider repairing it.

Pressure manifold and cooler temperatures are normal, considering the hydraulic oil temperature and room temperature.

2.2. Control panels, remote-control valves and related equipment

Equipment / Location	Normal Condition	Acceptable condition	Poor condition
Main control panel / CCR	X		
System pressure pot-meter	X		
System pressure indicator/ pressure gauge	X		
Pumps pot-meters and pressure indicators	X		
Remote control panels: 2 x at HPU room, 1 x CO2 room	Х		
Remote Proportional control valves Type: FRAMO / MOOG VALVES	Х		
RCV manifolds filters (pilot line filter): 2 x	Х		
PLC Battery installed (Yes / No X)			

PLC general condition	Normal		
Emergency override panels; key and tools available	YES, INSIDE PANEL		
Wiring and connections		SEVERAL JUMPERS NOTICED	

Acceptable: Term is used when the equipment /parts is/are complete, however some oxidation, materials wear is observed.

Poor: Term is used when equipment/parts are missing, damaged, leaking above limit

2.2.1. <u>Alarms tests</u>

Reference to instrument list no.: 0216-1254-1

Alarm Description	Alarm	Shut down	Remarks
Hydraulic oil level high	YES	N/A	
Hydraulic oil level low	YES	N/A	
Hydraulic oil level low low	YES	YES	INSTRUMENT/ CABLE SHOWING DEFECT
Main return line closed	NO	NO	NO CABLE, NO ALARM, JUMPERS INSTALLED
Main suction line closed	YES	YES	
Local suction lines closed	4 ×	YES	SHUT DOWN THE CORRESPONDENT PPK

Feed / Protection pressure YES Clogged main return filter. YES ALARM IS ON (Main filter dirty) Hydraulic oil temperature YES N/A AT 63 ° gives alarm (oil temperature high) Excessive wear YES N/A (Wear indication) Emergency stop power pack room N/A YES Located at HPU room entrance Emergency stop on deck N/A YES ONLY STOP CARGO PUMPS (Emergency stop cargo pumps) Emergency stop C.C.R. N/A YES System pressure low YES N/A Cooling system failure YES N/A HPU oil leakage N/A N/A **HPU** Shielding N/A N/A Power failure YES Inert gas low pressure N/A JUMPER INSTALLED Other alarms: YES * * Only the emergency alarms for DIESEL • Diesel engine alarms YES

ITS RECOMMENDED TO HAVE THE ALARMS TEST ONCE A YEAR, EXCEPT FOR EMERGENCY STOPS AND INERT GAS LOW PRESSURE ALARMS THAT MUST BE CHECKED BEFORE ANY DISCHARGE OPERATION.

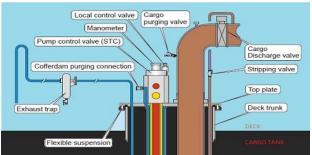
2.3. Cargo (COP) and SLOP offloading pumps – Hydraulic driven

Hydraulic cargo pumps type: 02 x FRAMO SD150 - 6

10 x FRAMO **SD200 - 6**

02 X FRAMO **SD100 -6**

Cargo p	umps	cond	ition																		
	STC va	alve		man (PG)	omet	er	Local control valve (LCV)				Purging lines,		Cargo Stripping lines and valves		Cargo line			Hydraulic branch lines a valves		and	
Tank no.	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor
1P	Χ			Χ			Х			Х			Х			Χ			Χ		
15	Х			Χ			Χ			Х			Х			Χ			Х		
2P	Х			Χ			Χ			Х			Χ			Χ			Χ		


_						1	1				1					
25	Χ		Χ		Χ			Χ			Χ		Χ		Χ	
3P	X		Χ		Χ			Χ			Χ		Χ		Χ	
3S	Χ		Χ		Χ			Χ			Χ		Χ		Χ	
4P	Χ		Χ		Χ			Χ			Χ		Χ		Χ	
4 S	X		Χ		Χ			Χ			Χ		Χ		Χ	
5P	X		Χ		Χ			Χ			Χ		Χ		Χ	
5S	Χ		Χ		Χ			Χ			Χ		Χ		Χ	
6P	Χ		Χ		Χ			Χ			Χ		Χ		Χ	
6S	Х		Χ		Χ			Х			Χ		Χ		Χ	
						SL	OP pu	ımps co	nditio	on:	•					
SLOP P	Х		Χ		Χ			Х			Χ		Χ		Х	
SLOP S	Χ		Χ		Χ			Х			Χ		Χ		Χ	

Acceptable: Term is used when the equipment /parts is/are complete, however some oxidation, materials wear is observed.

Poor: Term is used when equipment/parts are missing, damaged, leaking above limit

Comments:

In general, the cargo pumps top plates arrangement and related equipment are in normal condition.

Top plate arrangement

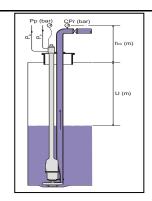
2.3.1. Cargo pumps performance test and purging

- All cargo pumps with suitable cargo in the tanks need to be run against closed valve.
- The expected cargo pressure (head), see performance diagram for the pump and calculate.
- Cargo with viscosity >1 will result in higher hydraulic pressure.
- To get a proper value, it is necessary to use a calibrated manometer to read the cargo and hydraulic pressure.
- Pumps cofferdam purging to be done according to manufacturer instructions

Performance test

Equipment(s) used in test/control: Digital manometer KELLER type LEO2-Ei/300bar/81191.1 / S.N.036256

				rded data data during				(af		data a ulations		esults orrections)
Max. Syst	em pressu	re: 2	50 bars	System	pressure d	luring test: 2	oobars	DP (I da	•	Hea (ml		
Return pr	essure:	6	bars	Obser	vations:			Calc wa	t. for ter	dat Calc. wat	for	ISION
Tank No.	Pump type	SpG (kg/dm³)	Viscosity (cSt)	Ullage (meters)	Head to measure point hm (meters)	Hydraulic pressure recorded during test Pp(bars)	Cargo pressure recorded during test CPr (bars)	Expected	Recorded	Expected	Recorded	CONCLUSION
1P	SD150	1	1	11,200	1	165	12,3	118	155	138	138	
1SB	SD150	1	1	13,020	1	162	12,8	118	152	138	144	
2P	SD200	1	1	12,500 1 185 12,6 142 175 143 142 dpw above lir								dpw above limit


2SB	SD200	1	1	12,025	1	185	13,0	142	175	143	146	dpw above limit
3P	SD200	1	EMPTY	12,023		10)	±3/°	-42	-/3	-43	140	
3SB	SD200	1	1	13,340	1	185	12,5	142	175	143	142	dpw above limit
4P	SD200	1	1	11,993	1	178	11,9	142	168	143	134	
4SB	SD200	1	1	16,500	1	168	16,5	142	158	143	186	
5P	SD200	1	EMPTY									
5SB	SD200	1	1	6,575	1	168	11,5	142	158	143	125	
6P	SD200	1	1	11,770	1	190	12,2	142	180	143	144	dpw above limit
6SB	SD200	1	1	9,370	1	190	12,2	142	180	143	135	dpw above limit

Performance test show that pumps from tanks 2P, 2SB, 3SB, 6P and 6SB have DPW above limit (170bars) and need to have wear rings replaced, impeller, impeller hub inspected.

$$H = \frac{CPr \cdot 10}{SpG \cdot 0.981} + U + hm \text{ (mlc)}$$

$$\mathsf{CPe} = \frac{(Hp - U - hm) \cdot SpG \cdot 0,981}{10} \, \mathsf{(bar)}$$

$$dpw = (Pp / SpG) - Pr(bar)$$

Н	Pump discharge head	(mlc)	
CPr	Cargo pressure, recorded	(bar)	
SpG	Specific gravity	(kg/dm³)	
U	Ullage	(m)	
hm	head to measuring point	(m)	
Hp	Head from performance diagram	(mlc)	
Cpe	Cargo pressure, expected	(bar)	
dpw	Hydraulic diff. pressure (calc. for wa	ater)	(bar)
Pр	Hydraulic pressure (recorded)		(bar)
Pr	Hydraulic return pressure (recorded)	(bar)	

Purging routine form / evaluation:

Cargo pumps with excessive cargo leaks:	1P, 3P, 4P
Cargo pumps with excessive hydraulic oil leaks:	2P
Cargo pumps with blocked cofferdam:	Non
Purging routines form filled in correctly:	Yes X No

Comments:

Purging routines did show leakages at pumps cofferdams and our tests done during inspection showed that cargo pump from tank. 1P, 3P and 4P S have cargo leak. The one from COP 2P have an oil leak. Is recommended having the pumps pressure tested and repair according to findings.

Cargo leak: Prior to any dismantling of the cargo pump, cofferdam must be pressure tested to identify the location of the leak. A small leakage rate of up to about 0.5 I/day (and higher with light cargoes) during pump operation is normal. Acceptable leakage rate depends on the type of cargo. For critical cargoes, when the leakage rate is more than 2 litres/day or higher, the pump must be pressure tested/repaired at first opportunity

Hydraulic oil Leak: After the pump head have been lowered from the pipe stack, the pump head and pipe stack must be pressure tested separately to identify the leak. Hydraulic oil leakage: A small leakage rate into the cofferdam up to about 10 ml/h (0.25 l/day) from the mechanical oil seal or lip seal during pump operation is normal. For short periods of time, higher leakage peaks can occur. If the leakage rate is increasing above acceptable level, the pump must be pressure tested/repaired at first opportunity.

Blocked Cofferdam: This is a serious situation as the cargo pump's cofferdam can not be monitored. The cargo pump must be repaired at first oportunity. In general is not recommended operating the cargo pump with blocked cofferdam. For advice, depending of type of cargo etc., contact your Service Station.

2.4. Ballast Pumps (WBP) – Hydraulic driven

Hydraulic ballast pump type: o2 x FRAMO SB300-4 /Submerged

Ballast pu	mps	con	ditio	n			•														
	STC	valve	•	Manometer and cover (PG)		Local control valve (LCV)		Header tanks/ Cofferdam drain		Priming system/ Ejector		Hydraulic branch lines and valves			Air lines, air lines valves and filters						
Tank no.	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor
S	Χ				Х		Χ			Х			Χ			Χ			Χ		
Р	Χ			•	Х	·	Χ			Х			Χ			Χ			Χ		
Last inspectio	Last inspection of pump protection anodes:				:	No records															
Protection an	Protection anodes replaced on:					Need to be replaced															

Normal: Term is used when the equipment /parts is/are complete, clean and without broken or missing parts. **Acceptable:** Term is used when the equipment /parts is/are complete, however some oxidation, materials wear is observed. **Poor:** Term is used when equipment/parts are missing, damaged, leaking above limit

Comments:

Normal performance and working reported, however was noticed that most of anodes are worn out and should be replaced.

 $\label{lem:burney} \textit{During vessel stay at yard the ballast pump SB side was repaired. Performance its normal.}$



Top plate with header tank and priming system

Pump head and casing

2.4.1 Ballast pumps capacity and performance test

Comments: normal performance reported No actions required for now.

2.5. Other pumps and hydraulic driven equipment's

	Manometers and protection cover (PG)						Control panels			-	ulic line and val	-	Cargo lines, hoses and valves		
Equipment and location	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor	Normal	Acceptable	Poor
PORTABLE pump Type: FRAMO TK150 Location: FWD store	Х			Х				N/A		Х			Х		

Winches hydraulics		N/A	Χ		Χ		X			
TCP PUMP	>		>		<		>		<	
Type: MA150/200	^		^		^		^		^	

Acceptable: Term is used when the equipment /parts is/are complete, however some oxidation, materials wear is observed.

Poor: Term is used when equipment/parts are missing, damaged, leaking above limit

Comments: Normal performance and operation reported on all equipment. No actions required for now.

2.6. Piping

Piping:	Normal Condition	Acceptable condition	Poor condition
Main high-pressure pipe <u>Material</u> : Mild steel	Х		
Main low-pressure pipe <u>Material</u> : Stainless Steel on deck /mild steel in cover area	Х		
Branch lines (high pressure) <u>Material</u> : Mild Steel	X		
Branch lines (low pressure) Material: Stainless Steel	Х		
Pilot lines <u>Material</u> : Duplex Stainless steel	Х		
Flexible pipe clamps	Х		
Bulkhead adaptors	X		
Axial compensators (Anchor)	Х		
By-pass / air-venting / heating valve assembly	Х		
Snap-on stations	X		
Cargo lines <u>Material</u> : Mild steel	X		
Preservation	X		

Normal: Term is used when the equipment /parts is/are complete, clean and without broken or missing parts.

Acceptable: Term is used when the equipment /parts is/are complete, however some oxidation, materials wear is observed.

Poor: Term is used when equipment/parts are missing, damaged, leaking above limit/corroded.

2.7. Bow Thruster

NO FRAMO BOW THRUSTER INSTALLED IN THE VESSEL

2.8. Cargo Heaters

All cargo tanks heaters are in normal condition and no actions required for now.

3. Spare parts and tools

Spare parts and tool verification during inspection											
Location	ENGINE ROOM STORE										
Storage	NORMAL										
Framo toolbox:	Available and complete										
Torque wrench for STC & Impeller:	Available and complete										
Pump pressure testing kit:	Available and complete										
Manometer set:	Available and complete										
Inventory available:	NOT FOUND										
Availability of wear and tear spare parts	RECOMMENDED HAVING ONE SET OF SPARES FOR EACH TYPE OF PUMPS										
Availability of spare filter elements	TO BE IMPROVED										

Comments

It is recommended to have at least one complete set of parts for each type of pump. The same is recommended regarding filters. Special tools, testing kit and manometer set are important to have available onboard, because without some of these tools it's very difficult to make a proper maintenance of the FRAMO system and pumps. We recommend having the tools purchased and available.

3.1. Spare parts and tools necessary for installation and repairs

NOTE: If not listed below, any other spare requ	uired is available onboard									
Reference chapter no.	Part description	Quantity	Manufacturer part ID.							

NOTE: SEPARATE LIST WITH SPARE PARTS RECOMMENDATION WILL BE SENT IN SEPARATE.

5. Attached documents:

- PURGING ROUTINES
- OIL SAMPLE ANALYSES REPORTS